Estratégia e Organizações

Matemática financeira: o que é, principais fórmulas e dicas

4.5/5 - (52 votes)

Se a gestão do dinheiro não é o forte da empresa, dedicar-se à matemática financeira pode ajudar você a reverter o quadro e encontrar o crescimento sustentável.

À primeira vista, pode até parecer que se trata de um conhecimento restrito à graduação em Matemática ou, quem sabe, exigido de candidatos em concursos públicos.

Mas não se engane: um simples resumo sobre matemática financeira deixa claro que ela vai muito além da teoria, possuindo aplicações práticas importantes.

Já na abertura deste texto, falamos na realidade de um negócio. Mas mesmo em âmbito pessoal, suas contribuições são marcantes.

E elas aparecem, especialmente, na maior capacidade de organização.

Se você deseja elevar a sua habilidade em lidar com dinheiro, seja qual for o objetivo que estabeleça para ele, é importante aprofundar-se no estudo da matemática financeira, suas fórmulas e exercícios.

E, neste artigo, você vai encontrar uma abordagem completa, porém menos técnica.

Buscaremos destacar a importância da matemática financeira em uma linguagem acessível, que é para atender até mesmo aqueles que não têm grande apreço pelos números.

Você vai conferir conceitos como porcentagem, juros simples, juros compostos, frações e, o principal: como utilizar tudo isso a seu favor no dia a dia.

Dê só uma olhada nos tópicos que vamos abordar a partir de agora:

  • O que é e para que serve a matemática financeira?
  • Qual a importância da matemática financeira no mundo corporativo?
  • O que é PMT em matemática financeira?
  • O que é PV em matemática financeira?
  • Conceitos básicos da matemática financeira
  • Principais fórmulas de matemática financeira
  • Juros Simples
  • Juros Compostos
  • Porcentagem
  • Razão e Proporção
  • Regras de três simples e compostas
  • Frações
  • Exercícios de matemática financeira.

É hora de aprender a fazer o dinheiro trabalhar a seu favor, elevar o seu valor e cortar gastos.

Vamos conversar sobre matemática financeira?

Aproveite a leitura!

O que é e para que serve a matemática financeira?

A matemática financeira ajuda imensamente no planejamento e gestão do dinheiro de uma empresa

Matemática financeira é uma área de aplicação prática da matemática, que consiste em cálculos direcionados à melhor organização e ao maior controle do dinheiro.

Mais do que uma ciência, é uma ferramenta bastante útil no dia a dia, tanto para cuidar das contas pessoais quanto daquelas que pertencem a uma empresa.

A partir de diferentes fórmulas, sobre as quais vamos falar ainda neste artigo, é possível ter uma visão integral sobre as finanças, utilizar bem o dinheiro, aumentar o seu valor e evitar prejuízos.

É também a partir dos instrumentos de matemática financeira que sonhos são concretizados.

Para entender melhor, basta lembrar da importância da organização e planejamento ao contratar um empréstimo ou obter um financiamento, seja para aquisição de um veículo ou imóvel.

Exceto se você possui toda a quantia para realizar o pagamento à vista, terá que fazer cálculos para entender o impacto desse produto financeiro e suas prestações no orçamento pessoal.

Para tanto, são necessários conhecimentos básicos sobre porcentagem, juros e fórmulas que permitem compreender exatamente o tamanho da conta.

Sempre lembrando que, nesse tipo de operação, o custo final é diferente do contratado, justamente devido à incidência de juros.

Outro bom exemplo é o de investimentos, quando os números jogam a seu favor.

Você pode planejar a sua aposentadoria, deixando dinheiro na poupança. Mas é importante que essa decisão seja tomada depois de comparar a rentabilidade com outras opções.

Assim, identifica os ganhos que vai obter em um determinado período.

E você só consegue fazer isso a partir de instrumentos de matemática financeira.

Vai dizer que, agora, ela não parece ainda mais interessante para o seu dia a dia?

Mas a importância dela vai além e aparece de forma marcante no mundo corporativo, como veremos a seguir.

Qual a importância da matemática financeira no mundo corporativo?

A saúde financeira de uma empresa e o seu fluxo de caixa podem ser calculados com a matemática financeira

Ao observar os exemplos trazidos no tópico anterior, quanto à aplicação da matemática financeira em âmbito pessoal, já dá para ter uma ideia da sua importância para as empresas.

A verdade é que o empreendedor não precisa dominar a matemática, mas tem o compromisso de compreender e saber utilizar algumas de suas fórmulas para tarefas de rotina.

O melhor exemplo, sem dúvidas, é o do fluxo de caixa.

Essa é a ferramenta que registra as entradas e saídas de dinheiro da empresa. Ou seja, suas receitas e despesas.

É a partir dela que o gestor identifica como anda a saúde financeira do negócio, no que vem gastando mais do que deveria e, assim, onde estão as oportunidades de economia.

Por aí, já temos uma amostra de que não há como crescer, sequer sobreviver enquanto empresa, sem um controle rígido das finanças.

E fica pior ainda ao tomar empréstimos sem conhecer a realidade do caixa.

Ou, quem sabe, projetar um novo produto ou abrir uma filial, sem projetar como se dará o desempenho do negócio nos próximos meses e anos.

Tudo isso depende da ferramenta sobre a qual estamos falando neste artigo: a matemática financeira.

Você pode ser um ótimo administrador, pagar as contas em dia, cobrar os clientes e receber no prazo, negociar condições vantajosas com fornecedores e ter elevados índices de produtividade e eficiência na empresa.

Tudo isso é válido para alcançar os objetivos propostos para ela.

Por outro lado, tudo pode ir por água abaixo em um único movimento não planejado, que desconsidere a sua capacidade financeira no médio e longo prazo.

O que a matemática financeira faz é ajudá-lo a compreender como o dinheiro se comporta.

E para um negócio crescer de forma sustentável e atingir a longevidade, não há nada mais importante.

O que é PMT em matemática financeira?

A sigla PMT aparece com frequência quando se trata de matemática financeira

PMT são pagamentos de mesmo valor, ou seja, registrados pelo fluxo de caixa (pessoal ou empresarial) de forma recorrente.

Podem aparecer em diferentes fórmulas utilizadas justamente para ter uma compreensão mais próxima da realidade financeira e fazer projeções a partir dela.

Importante destacar que o PMT não se refere apenas a pagamentos efetuados, mas também recebidos.

Contudo, em ambos, a característica principal está na repetição, especialmente mensal, mas também anual. Por isso, também são tratados como valor da parcela.

São exemplos de pagamentos de mesmo valor:

  • Prestação fixa de empréstimo ou financiamento
  • Parcela fixa de compra junto a um fornecedor
  • Parcela fixa de recebimento de um cliente.

Podemos ainda citar um exemplo.

Pense em uma venda no valor de R$ 2.000,00, que você parcelou no boleto bancário em quatro vezes fixas, sempre com vencimento no dia 25.

Dessa forma, pelos próximos quatro meses, R$ 500,00 devem entrar no seu caixa sempre no dia 25.

Esse valor é um PMT.

E se a cobrança tivesse juros? Nesse caso, o PMT seria apenas um dos elementos a considerar no cálculo.

Mais à frente, ao falarmos das principais fórmulas matemáticas, vamos apresentar exemplos nos quais o PMT aparece.

O que é PV em matemática financeira?

O que é PV em matemática financeira?

PV, em inglês, significa present value. Ou seja, em matemática financeira, a sigla é conhecida por valor presente.

Mas o que isso quer dizer?

Não há mistério: é o valor que se tem no momento e do qual se parte em uma operação matemática.

Há fórmulas voltadas a descobrir o valor presente, mas vamos nos focar em um exemplo de sua aplicação mais comum.

Vamos supor que você faça um investimento de R$ 10 mil no Tesouro Direto, uma modalidade de renda fixa.

Nesse caso, o seu VP é justamente de 10.000. É dele que você parte para descobrir qual será o rendimento daqui a 12 meses, por exemplo, em uma fórmula que considera a correção mensal promovida pela incidência de juros.

O valor presente também pode estar em uma dívida constituída, como um empréstimo contratado para adquirir máquinas e equipamentos para a empresa.

O que não muda é que o VP será sempre o valor de momento, o ponto de partida de uma equação.

Conceitos básicos da matemática financeira

Conceitos básicos da matemática financeira

Seja compondo as fórmulas ou no dia a dia da administração das finanças, alguns conceitos estão na base da aplicação da matemática financeira.

Por isso, entender o que eles significam é um dos primeiros passos para desmistificar qualquer operação nessa área.

Confira os detalhamentos a seguir e você vai perceber que os fundamentos dessa disciplina são bastante simples.

Começando por uma das palavras mais populares no mundo dos investimentos: capital.

Capital (C)

Capital é o valor atual, que corresponde à quantia inicial de um investidor ou ao custo inicial de um produto ou serviço, à vista e sem taxas.

Imagine, por exemplo, que uma pequena confeitaria deseje comprar uma nova batedeira que, inicialmente, custa R$ 220,00 – este valor é o capital.

Geralmente, o produto se torna mais caro se a compra for parcelada, pois são adicionados juros.

Digamos que a batedeira tenha sido parcelada em 10 vezes, a parcelas de R$ 23,00.

Ao final da compra, a confeitaria terá pago R$ 230,00, ou seja, R$ 10,00 a mais do que o capital.

Juros (J)

Os juros correspondem ao valor remunerado pelo capital, ou seja, são uma espécie de pagamento pelo uso de um capital.

Uma das formas mais intuitivas para entender os juros é pensar no empréstimo do capital, que é remunerado através de juros.

Quando tomamos qualquer valor emprestado de um banco, instituição financeira ou até de um conhecido, é cobrada uma taxa relativa ao período em que ficamos com aquele valor.

A quantia correspondente são os juros.

Mesmo quando parcelamos uma compra no cartão de crédito e há juros – como no exemplo acima -, estamos, na prática, tomando um empréstimo da administradora do cartão, que adiciona um valor ao que tomamos inicialmente.

Os juros podem trabalhar ao nosso favor quando escolhemos boas aplicações financeiras, que rendem valores sobre nosso capital.

Taxa de Juros (i)

A taxa de juros é a porcentagem que determina o valor adicional ao capital investido ou emprestado inicialmente.

Esse percentual sempre tem relação com um prazo definido previamente, que pode ser ao dia, ao mês, ao ano, etc.

Para simplificar a utilização da taxa de juros nas fórmulas de matemática financeira, é comum converter os períodos em meses.

Montante (M)

Chamamos de montante a quantia total paga por meio de uma operação, incluindo o capital e os juros.

Assim, considerando o exemplo dado mais acima, o montante seria calculado assim:

  • C = 220
  • J = 10
  • M = C + J = 220 + 10 = R$ 230,00.

Acréscimo

Quando um produto ou serviço se torna mais caro, chamamos o valor adicionado de acréscimo.

Diferentemente dos juros, o acréscimo não remunera um investimento de capital, mas acrescenta uma quantia para a aquisição de um produto/serviço.

Voltando ao exemplo da batedeira, haveria acréscimo se o preço inicial (R$ 220,00) fosse alterado, por exemplo, para R$ 225,00, mesmo para uma compra à vista.

O acréscimo pode representar uma simples busca pelo aumento no lucro ou um ajuste proveniente da elevação nos custos de matéria-prima, impostos, mão de obra, entre outros fatores.

Desconto

Representa o valor ou percentual retirado do preço inicial de um produto ou serviço.

Se, ao invés de se tornar mais cara, a batedeira passasse a custar R$ 215,00, haveria um desconto de R$ 5,00.

Também poderíamos calcular a porcentagem que esse desconto representa.

Vale recordar que o capital corresponde a 100% do valor da batedeira, ou seja, queremos solucionar a sentença:

  • X% de 220 = 5

Temos, então:

  • X/100 * 220 = 5
  • 220X/100 = 5
  • 220X = 500
  • X = 500/220
  • X = 2,27.

Lucro

Lucro é a quantia ganha a partir de uma negociação comercial, excluindo o custo inicial ou valor de compra de um item.

Digamos que a confeitaria tenha adquirido a batedeira por R$ 220,00, mas decidiu vender o item num período em que seu modelo estava em falta no mercado.

Assim, repassou a batedeira por R$ 240,00.

O lucro ficou em 240 – 220, ou seja, a venda rendeu RS 20,00 para a confeitaria.

Principais fórmulas de matemática financeira

Algumas das fórmulas abaixo são básicas e fáceis de usar, mas podem trazer resultados de suma importância

Agora que alguns dos principais conceitos estão claros, assim como a definição e a importância da matemática financeira, vamos entrar no campo prático.

Lembrando que, por mais que você não goste de números, cálculos e fórmulas, a matemática desempenha um papel fundamental no seu bolso.

Como já vimos ao chegar até aqui, a saúde do seu orçamento depende disso.

E se você tem uma empresa ou ocupa um cargo de gestão nela, o conhecimento é obrigatório.

Caso contrário, pode ser mais uma a ter que fechar as portas precocemente.

Então, conheça agora as principais fórmulas de matemática financeira.

Juros Simples

Juros simples são uma correção calculada sobre um valor inicial, expressa em porcentagem.

Trata-se de um acréscimo que, como o nome indica, é bastante simples de ser realizado.

Pode ser uma cobrança ou recebimento extra por não haver o desembolso total no momento

Partindo de um valor presente, se aplica uma taxa de juros que leva em conta também o período da operação.

Vale para vendas a prazo e investimentos (dinheiro que entra) e para compras parceladas e empréstimos (dinheiro que sai).

A fórmula dos juros simples é bastante enxuta e considera quatro variáveis:

  • Capital (C): o valor presente, que se refere à quantia total da operação
  • Juros (J): acréscimo sobre o capital
  • Tempo (t): a duração da operação (geralmente expressa em meses)
  • Taxa (i): percentual que determinada a quantidade de juros que incidem na operação.

Assim, chegamos à seguinte fórmula: J = C * i * t.

Exemplo de juros simples

Você fez uma compra no valor de R$ 1.000,00. Esse é o capital.

A taxa de juros aplicada é de 2% ao mês. Para o cálculo, a porcentagem é convertida em número decimal, ou seja, 2/100 = 0,02.

A operação foi programada para cinco meses. Esse é o tempo.

Logo, a fórmula a ser aplicada é a seguinte:

  • J = 1000 x 0,02 x 5 = 100.

Ou seja, o custo final da operação com o acréscimo dos juros simples será de R$ 100, o que significa dizer que a sua compra a prazo representará uma despesa de R$ 1.100,00.

Juros Compostos

Juros compostos representam o juro sobre juro, ou seja, têm aplicação sobre o montante de cada período.

A melhor forma de entender é justamente comparar com os juros simples.

Observando o exemplo anterior, você vê que há uma previsão clara sobre o acréscimo antes mesmo de a operação ser realizada, com juros incidindo sobre o valor total da operação.

No caso dos juros compostos, isso muda um pouquinho.

O que acontece é que a cada mês, é aplicada uma correção sobre o capital de momento.

Isso torna a rentabilidade de um investimento mais atrativa, mas, por outro lado, pode elevar uma dívida se for essa a modalidade de correção utilizada.

No caso dos juros compostos, um novo elemento é somado à fórmula:

  • M: corresponde ao montante final.

Os demais se mantém: capital (C), taxa de juros (i) e tempo (t).

A fórmula agora é a seguinte:

  • M = C x (1 + i) t

Exemplo de juros compostos

Para este exemplo, vamos considerar uma aplicação financeira no valor de R$ 2.000,00 durante um ano, com juros compostos de 2% ao mês.

Então, temos o seguinte:

  • M = ?
  • C = 2.000
  • i = 2% = 2/100 = 0,02 (decimal)
  • t = 1 ano = 12 meses.

Então, vamos aplicar a fórmula:

  • M = 2.000 x (1 + 0,02)¹²

Agora, vamos calcular:

  • M = 2.000 x 1,02¹²
  • M = 2000 x 1,268242
  • M = 2.536,48.

Veja, então, que a aplicação de juros compostos pelo período de 12 meses resultou em um rendimento de R$ 536,48.

Porcentagem

A porcentagem, velha conhecida até de quem estudou matemática básica, aparece com tudo na matemática financeira

A porcentagem, também chamada de percentagem, é uma razão centesimal.

Ou seja, uma unidade de medida que apresenta a proporção ou relação entre dois valores a partir de uma fração que tem no 100 o denominador comum.

Dentro da matemática financeira, ela pode ser muito útil para identificar, por exemplo, quanto do seu orçamento está comprometido com uma determinada despesa ou qual é a principal fonte de receita em termos percentuais.

Seria interessante descobrir, por exemplo, que dois clientes representam 56% do seu faturamento, não é mesmo? Mas quanto equivale esses 56%?

A porcentagem pode ser encontrada a partir de diferentes cálculos.

Um dos mais simples consiste na multiplicação do percentual que deseja descobrir pelo valor presente.

Para seguir no mesmo exemplo, vamos supor que seu faturamento mensal seja de R$ 14 mil.

Logo, 56% equivalerá ao seguinte:

  • 56 x 10.000 = 784.000 / 100 = R$ 7.840,00

Interessante e fácil, não é mesmo?

Use a porcentagem no dia a dia para calcular descontos e lucros.

Um exemplo: seu concorrente tem ofertado 10% de desconto à vista e você pensa em oferecer 12%. Quanto isso representaria na prática?

Considerando uma venda no valor de R$ 890, temos o seguinte:

  • 12 x 890 = 10.680 / 100 = 106,80
  • 890 – 106,8 = 783,20

Logo, você oferecerá R$ 106,80 de desconto e definirá como preço de venda R$ 783,20.

Razão e Proporção

Aqui, temos outros dois conceitos importantes no universo da matemática financeira.

A razão é utilizada na comparação de duas grandezas (A e B).

Seu cálculo consiste na divisão de uma pela outra.

Um exemplo bastante prático do dia a dia é o da velocidade com a qual nos deslocamos de casa para o trabalho.

Se você imprime uma velocidade média de 40 km/h, saiba que esse valor é a razão de duas grandezas: distância (A) e tempo (B).

Ele é obtido da divisão entre elas. Ou seja: você percorreu 10 quilômetros em 0,25 horas (15 minutos).

Já a proporção corresponde à igualdade ou equivalência de razões.

Seguindo no exemplo anterior, podemos dizer que a velocidade média de 40 km/h (que representa a razão) é a mesma de quem percorre 20 quilômetros em 0,5 horas (30 minutos).

Que tal um exercício? Abaixo, você confere duas razões que se equivalem e precisa descobrir o valor de X na proporção:

  • 2 / 7 = 12 / X

Para o cálculo, podemos aplicar a regra de três (falaremos mais sobre ela na sequência), sendo:

  • 12 x X = 7 x 12
  • 2X = 84
  • X = 84 / 2
  • 42.

Regras de três simples e compostas

A regra de três também reaparece na matemática financeira para facilitar os cálculos

A regra de três, que usamos para calcular a proporção no exercício anterior, está mais presente do que imagina na sua vida.

Você pode utilizar essa fórmula fácil e prática para resolver uma série de equações no dia a dia, incluindo porcentagens.

No seu conceito clássico, ela se aplica a problemas que envolvem duas ou mais grandezas direta ou inversamente proporcionais.

Considerando o seu formato simples, você precisa de três elementos para descobrir um quarto, não identificado.

Vamos a um exemplo?

Supondo que você venda 50 itens de um determinado produto todo mês e que isso represente R$ 2.500,00 de receitas no período, quanto será o seu faturamento se passar a vender 60 itens?

Observe a equação abaixo:

  • 50 = 2.500
    60 = X

Na regra de três simples, você deve cruzar as informações. Ou seja:

  • 60 x 2.500 = 150.000
  • 000 / 50 = 3.000

Pronto: ao vender 60 itens, seu faturamento será de R$ 3.000,00. Simples mesmo, não é verdade?

Já o modelo de regra de três composta acrescenta mais dois elementos, totalizando seis na mesma equação (apenas um desconhecido)

Seguindo no exemplo, você tem agora o número de itens e o valor a receber em duas situações diferentes.

Mas que tal incluir também o gasto que você tem hoje para comprar os itens para revender e verificar quanto terá que desembolsar após a mudança?

Observe a equação abaixo, que abre com a despesa atual (R$ 1.000,00):

  • 000 = 50 = 2.500
    X = 60 = 3.000.

Para calcular, primeiro, resolva a parte conhecida, multiplicando 50 por 2.500 e 60 por 3.000.

Neste caso, teremos o seguinte:

  • 000 = 125.000
    X = 180.000

Agora, a regra de três passa a ser simples:

  • 000 x 180.000 = 180.000.000
  • 000.000 / 125.000 = 1.440

Ou seja, seu gasto com fornecedores subirá de R$ 1.000,00 para R$ 1.440,00.

Quer mais uma prova de como a matemática financeira é um poderoso instrumento de gestão?

Ao vender dez itens a mais, você terá um incremento de R$ 500,00 nas receitas e de R$ 440,00 nas despesas. Ou seja, um lucro de R$ 60,00 – R$ 6,00 por item.

Com essas informações, você pode agora decidir se vale mesmo a pena promover essa mudança, considerando ainda a existência de outros gastos, como o pagamento de colaboradores.

Frações

Para terminar, vamos falar rapidamente sobre as frações, que nada mais são do que números expressos pela razão de outros dois.

É uma forma de divisão, tal qual a sua pizza que vem em oito fatias. Nesse caso, cada fatia equivale a ⅛ do total.

As frações podem ser apresentadas também em gráficos, o que ajuda na sua visualização e compreensão.

Existem diferentes tipos de frações: equivalentes, aparentes, mistas, próprias e impróprias.

Não vamos avançar na sua diferenciação, mas cabe apresentar um exemplo prático para verificar como elas podem ser úteis no dia a dia.

Supondo que o seu orçamento de marketing digital seja de R$ 25 mil para 2019 e que 100% do valor precisa ser dividido igualmente em 12 ações diferentes, incluindo marketing de conteúdo, link patrocinados, redes sociais e campanhas de e-mail marketing.

Na prática, significa que cada ação responderá por 1/12 (um doze avos) do orçamento total do marketing.

A partir dos resultados, você poderá identificar se a divisão se mostrou a mais correta e, caso contrário, ajustar seu planejamento para o período seguinte.

Exercícios de matemática financeira

Exercícios de matemática financeira

Depois de conhecer os conceitos e aplicações desse campo, é hora de colocar o aprendizado em prática.

Como uma ciência exata, a matemática financeira fica cada vez mais simples e clara na medida em que é treinada.

Pensando nisso, reunimos 10 exercícios para reforçar os conhecimentos, incluindo algumas possibilidades de resolução.

Recomendamos que você comece tentando solucionar os problemas sozinho para, em seguida, conferir as respostas e raciocínios utilizados para chegar até elas.

Vamos lá?

Exercício 1 – Regra de três e razão

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo Ministério da Educação)

Num torneio de basquete, uma determinada seleção disputou quatro partidas na primeira fase e venceu três. Qual a porcentagem de vitórias obtida por essa seleção nessa fase?

Para solucionar o problema, podemos utilizar a regra de três simples.

Temos, então:

  • X% de 4 = 3
  • (X/100) * 4 = 3
  • 4X/100 = 3
  • 4x = 300
  • x = 75.

Também poderíamos utilizar o conceito de razão:

  • 3/4 = 0,75

Resposta: na primeira fase, a porcentagem de vitórias foi de 75%.

Exercício 2 – Porcentagem

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo Ministério da Educação)

Um fichário tem 25 fichas numeradas, sendo que 52% dessas fichas estão etiquetadas com um número par. Quantas fichas têm a etiqueta com número par? Quantas fichas têm a etiqueta com número ímpar?

Solução:

  • Etiquetas Pares = 52% de 25 fichas = 52% * 25
  • 52 * 25 / 100 = 13
  • O restante (100% – 52% = 48%) são de fichas número ímpar.

Poderíamos ainda calcular o valor de 50% e acrescentar 2% (1% + 1%), da seguinte forma:

  • 50% de 25 = 12,5
  • 1% de 25 = 0,25.

Temos, então:

  • 12,5 + (0,25 + 0,25)
  • 12,5 + 0,5 = 13.

Resposta: Nesse fichário, há 13 fichas etiquetadas com número par e 12 fichas com número ímpar.

Exercício 3 – Porcentagem e taxas

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Dos 35 candidatos que prestaram um concurso, 28 foram aprovados. Sendo assim, qual foi a taxa de aprovação?

Solução:

A razão que representa os candidatos aprovados seria 28/35.

Para obtermos a taxa percentual, vamos dividir o numerador pelo denominador:

  • 28: 35 = 0,8
  • 0,8 = 80/100 = 80%

Resposta: Nesse concurso, 80% dos candidatos inscritos receberam a aprovação.

Exercício 4 – Juros compostos

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Aplicou-se a juros compostos um capital de R$ 1.400.000.00, a 4% ao mês, durante 3 meses. Determine o montante produzido neste período.

Separando os dados fornecidos no enunciado do problema:

  • C = 1.400.000,00
  • i = 4% a.m. (ao mês)
  • t = 3 meses
  • M = ?

Fórmula: M = C x (1 + i) t

  • M = 1.400.000 x (1 + 0,04)3
  • M = 1.400.000 x (1,04)3
  • M = 1.400.000 x 1,124864
  • M = 1.574.809,600

Resposta: O montante é R$ 1.574.809,600

Exercício 4 – Juros simples e compostos

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Considerando que uma pessoa empresta para outra a quantia de R$ 2.000,00, a juros simples, pelo prazo de 3 meses, à taxa de 3% ao mês. Quanto deverá ser pago de juros?

Conforme o enunciado, temos:

  • Capital aplicado (C): R$ 2.000,00
  • Tempo de Aplicação (t): 3 meses
  • Taxa (i): 3% ou 0,03 ao mês (a.m.).

Fazendo o cálculo, teremos:

  • J = c . i. t
  • J = 2.000 x 3 x 0,03
  • J = R$ 180,00.

Resposta: Ao final do empréstimo, ao final dos três meses, a pessoa pagará R$ 180,00 de juros.

Considerando a mesma situação, mas com a cobrança de juros compostos, temos:

  • Capital Aplicado (C) = R$ 2.000,00
  • Tempo de Aplicação (t) = 3 meses.

Fazendo a conversão para decimal: taxa de aplicação (i) = 0,03 (3% ao mês)

Fazendo os cálculos:

  • M = 2.000.( 1 + 0,03)³
  • M = 2.000 . (1,03)³
  • M = R$ 2.185,45.

Resposta: Ao final do empréstimo, a pessoa pagará R$ 185,45 de juros.

Exercício 5 – Porcentagem

(Fonte: Vunesp/ Mundo Educação)

Um advogado, contratado por Marcos, consegue receber 80% de uma causa avaliada em R$ 200.000 e cobra 15% da quantia recebida, a título de honorários. A quantia, em reais, que Marcos receberá, descontada a parte do advogado, será de:

  • a) 24.000
  • b) 30.000
  • c) 136.000
  • d) 160.000
  • e) 184.000.

Solução:

1º passo: encontrar o valor recebido na causa:

  • 80% de 200.000,00
  • 0,8 * 200.000,00 = 160.000,00.

Agora, vamos calcular os 15% da causa que serão recebidos pelo advogado:

  • 15% de 160.000
  • 0,15 * 160.000 = 24.000.

O valor que restará para Marcos será o da diferença entre o valor da causa e o valor pago ao advogado:

  • 000 – 24.000 = 136.000.

Resposta: Alternativa C.

Exercício 6 – Regra de três simples

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Exemplo 1: Com uma área de absorção de raios solares de 1,2 m2, uma lancha com motor movido à energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5 m2, qual será a energia produzida?

Solução:

Para aplicar a regra de três, vamos relacionar os valores conhecidos e o desconhecido:

  • 1,2 está para 400
  • 1,5 está para X.

Temos, então:

  • 1,2/1,5 = 400/X
  • 1,2X = 1,5 * 400
  • X = (1,5 * 400)/1,2)
  • X = 500.

Resposta: A energia produzida será de 500 watts por hora.

Exercício 7 – Desconto

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Considere um título cujo valor nominal seja R$ 10.000,00. Calcule o desconto comercial a ser concedido para um resgate do título 3 meses antes da data de vencimento, a uma taxa de desconto de 5% a.m.

Solução:

  • N (valor nominal) = 10.000
  • i = 5% ou 0,05 a.m.
  • t = 3.

Fórmula do desconto: Dc = N. i. t

  • V = 10000. (1 – 0,05.3) = 8.500
  • Dc = 10000 – 8.500 = 1.500
  • Valor descontado = R$ 8.500,00.

Resposta: O desconto será de R$ 1.500,00.

Exercício 8 – Juros simples

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Qual o valor de um capital que, aplicado à taxa de juros simples de 2% ao mês, rendeu depois de um ano R$ 240,00 de juros?

Solução:

Como a taxa mensal é 2% = 0,02, devemos considerar, para o tempo de 1 ano, 12 meses, pois tempo e taxa devem estar na referência temporal (neste caso em meses). Assim:

Fórmula: J = C. i .t

  • 240 = C . 0,02. 12
  • 240 = C . 0,24
  • C = 240/0,24
  • C = 1000

Resposta: O capital aplicado inicialmente foi de R$ 1.000,00.

Exercício 9 – Juros simples

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Determinar o montante correspondente a uma aplicação de R$ 450.000,00 por 225 dias com taxa de juros simples de 5,6% ao mês.

Dados:

  • C = 450.000
  • i = 5,6% ao mês
  • t = 225 dias
  • M = ?

Solução 1:

Repare que a taxa está expressa em meses, enquanto o tempo está em dias.

Portanto, é necessário converter um deles para que os cálculos sejam assertivos.

Vamos começar transformando o tempo em meses, dividindo 225 por 30 (já que cada mês tem 30 dias).

Fórmula: M = C.(1 +i .t)

  • M = 450.000.(1 + 0,056. 225/30)
  • M = 450.000.(1 +. 12,6/30)
  • M = 450.000.(1 + 0,42)
  • M = 450.000.(1,42)
  • M = 639.000
  • M = 639.000.

Solução 2:

Podemos, também, converter a taxa em dias, já que 1 dia equivale a 1/30 mês. A taxa ficaria em 5,6%/30.

Temos:

  • M = 450.000.(1 + 0,056/30 * 225)
  • M = 450.000.(1 + 0,42)
  • M = 450.000.(1,42)
  • M = 639.000.

Resposta: O montante será de R$ 639.000,00.

Exercício 10 – Juros simples

(Fonte: Apostila de Matemática Financeira da Rede e-Tec, distribuída pelo MEC)

Uma pessoa aplicou R$ 10.000,00 a juro composto de 1,8% a.a. Após quanto tempo terá um total de R$ 11.534,00?

Solução:

  • C = 10.000
  • i = 1,8% a.m. = 0,018
  • M = 11.534.

Fórmula: M = C.(1 + i)t

  • 534 = 10.000.(1 + 0,018)t
  • 1,018t = 11534/10.000
  • 1,018t = 1,1534
  • t = 8.

Resposta: Após 8 meses de aplicação, haverá um montante de R$ 11.534,00.

Conclusão

A matemática financeira é vital para fazer uma boa gestão e saber quais são seus recursos e fundos para seguir em frente

Então, o que achou dessa breve aula de matemática financeira?

O objetivo deste artigo não foi focar apenas em ensinamentos teóricos, mas apresentar a você a importância das fórmulas e cálculos no seu cotidiano.

Seja para as despesas pessoais ou para controlar melhor o dinheiro do negócio, a matemática é uma aliada e tanto.

A sugestão, então, é que faça deste material o seu ponto de partida.

Busque aprender mais sobre matemática financeira para qualificar-se como gestor do seu orçamento.

Na Fundação Instituto de Administração (FIA), você encontra opções de cursos para investir no aprendizado.

Uma das opções está na modalidade de ensino à distância (EAD), com o curso de Matemática Financeira (clique aqui para saber mais).

Para uma abordagem mais focada, tem também o curso de extensão em Matemática Financeira Aplicada à Gestão de Seguros e Previdência (veja mais neste link).

Visite o site para saber mais e, se desejar, faça contato conosco.

Prof. Dr. Rodolfo Leandro de Faria Olivo

Rodolfo Leandro de Faria Olivo é PhD e Mestre em administração pela FEA-USP, possui MBA em finanças pela EPGE-FGV e graduação em Administração de Empresas pela EAESP da FGV. Foi consultor de empresas na McKinsey&Company, executivo em empresas de telefonia celular, energia elétrica e de educação. Colabora em temas como: finanças, franquias e empreendedorismo com as revistas PEGN - Pequenas Empresas & Grandes Negócios, Superinteressante, Você S/A e Jornal DCI. Atualmente é professor da Faculdade FIA de Administração e Negócios, mantida Fundação Instituto de Administração - FIA, na Graduação, na pós-graduação lato sensu e no Mestrado Profissional em Gestão de Negócios.

Recent Posts

Habilidades profissionais: o que você precisa saber para avançar na carreira

Aprenda a desenvolver habilidades profissionais para se destacar no mercado de trabalho brasileiro. Leia e…

13 hours ago

Navegando pelo rumo certo: Value-Based Management como farol estratégico para empresas

Se você ainda não vê o Value-Based Management como um farol estratégico para a sua…

3 days ago

Qual o papel das empresas no desenvolvimento sustentável: estratégias para gerar valor a longo prazo

Descubra como a sustentabilidade empresarial pode transformar negócios, aumentar vendas e promover impacto positivo. Leia…

5 days ago

Contabilidade financeira: a base para o sucesso empresarial

Descubra como a contabilidade financeira fortalece a saúde financeira e apoia decisões estratégicas empresariais.

1 week ago

Empreendedorismo digital: o que é e como começar no mundo online

Está considerando a possibilidade de começar no empreendedorismo digital, mas não sabe como? Confira dicas…

1 week ago

Custo fixo e variável: aprenda as diferenças e como calcular cada um

Conhecer os conceitos de custo fixo e variável é algo que todo gestor ou dono…

2 weeks ago